Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.04.21268586

ABSTRACT

ABSTRACT The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from infection and vaccine-induced antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. Here we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals (∼21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4 + and CD8 + memory T cell responses confirmed these findings and reveal that reduced recognition to Omicron spike is primarily observed within the CD8 + T cell compartment. Booster vaccination substantially enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.

2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.30.21268554

ABSTRACT

In previously unvaccinated and uninfected individuals, non-RBD SARS-CoV-2 spike-specific B cells were prominent in two distinct, durable, resting, cross-reactive, “pre-existing” switched memory B cell compartments. While pre-existing RBD-specific B cells were extremely rare in uninfected and unvaccinated individuals, these two pre-existing switched memory B cell compartments were molded by vaccination and infection to become the primary source of RBD-specific B cells that are triggered by vaccine boosting. The frequency of wild-type RBD-binding memory B cells that cross-react with the Omicron variant RBD did not alter with boosting. In contrast, after a boost, B cells recognizing the full-length Omicron variant spike protein expanded, with pre-existing resting memory B cells differentiating almost quantitatively into effector B cell populations. B cells derived from “ancient” pre-existing memory cells and that recognize the full-length wild-type spike with the highest avidity after boosting are the B cells that also bind the Omicron variant spike protein. Abstract Figure

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.18.21260732

ABSTRACT

Background Understanding immunogenicity and effectiveness of SARS-CoV-2 vaccines is critical to guide rational use. Methods We compared the immunogenicity of mRNA-1273, BNT-162b2 or Ad26.COV2.S in ambulatory adults in Massachusetts, USA. To correlate immunogenicity with effectiveness of the three vaccines, we performed an inverse-variance meta-analysis of population level effectiveness from public health reports in >40 million individuals. Results A single dose of either mRNA vaccine yielded comparable antibody and neutralization titers to convalescent individuals. Ad26.COV2.S yielded lower antibody concentrations and frequently negative neutralization titers. Bulk and cytotoxic T-cell responses were higher in mRNA1273 and BNT162b2 than Ad26.COV2.S recipients, and <50% of vaccinees demonstrate CD8+ T-cell responses to spike peptides. Antibody concentrations and neutralization titers increased comparably after the first dose of either vaccine, and further in recipients of a second dose. Prior infection was associated with high antibody concentrations and neutralization even after a single dose and regardless of vaccine. Neutralization of beta, gamma and delta strains were poorer regardless of vaccine. Relative to mRNA1273, the effectiveness of BNT162b2 was lower against infection and hospitalization; and Ad26COV2.S was lower against infection, hospitalization and death. Conclusions Variation in the immunogenicity correlates with variable effectiveness of the three FDA EUA vaccines deployed in the USA.


Subject(s)
COVID-19 , Protein S Deficiency
SELECTION OF CITATIONS
SEARCH DETAIL